- Categories
- Shape-Independent
- 2 Layer General Guinier Porod
- general_guinier_porod.py
2 Layer General Guinier Porod - general_guinier_porod.py
import os
import sys
import numpy as np
#name
name = "general_guinier_porod"
#title
title = "Generalized Guinier Porod"
#description
description = """
Guinier-Porod model with TWO Guinier regions.
rg2 and s2 fit the low-q region
rg1 and s1 fit the mid-q region
porod_exp fits the high-q region
ref: B Hammouda, *A new Guinier-Porod model, J. Appl. Cryst.*, (2010), 43, 716-719."""
#parameters
parameters = [["rg2", "Ang", 100.0, [0, np.inf], "", "Low-Q Radius of gyration"],
["s2", "", 0.0, [0, np.inf], "", "Low-Q Dimension variable"],
["rg1", "Ang", 10.0, [0, np.inf], "", "Mid-Q Radius of gyration"],
["s1", "", 1.0, [0, np.inf], "", "Mid-Q Dimension variable"],
["porod_exp", "", 3.0, [0, np.inf], "", "Porod exponent"]]
# def form_volume(*arg):
# return 1.0
# def ER(*arg):
# return 1.0
def Iq(q, rg2, s2, rg1, s1, porod_exp):
import numpy as np # somehow this is necessary for the code to function properly
# preallocate return value
Iq = 0.0*q
# Take care of the singular points
if rg2 <= 0.0 or rg1 <= 0.0 or s2 > s1:
return Iq
# Calculate cross-over points and scale factors; the parameter "scale" = G1 multiplies all three pieces
Q1 = np.sqrt((porod_exp-s1)*(3-s1)/2)/rg1
Q2 = np.sqrt((s1-s2)/(2*np.power(rg2,2)/(3-s2) - 2*np.power(rg1,2)/(3-s1)))
D = np.power(rg1,-(porod_exp-s1)) * np.exp(-(porod_exp-s1)/2) * np.power((porod_exp-s1)*(3-s1)/2,(porod_exp-s1)/2)
G2 = np.exp(-np.power(Q2,2) * (np.power(rg1,2)/(3-s1) - np.power(rg2,2)/(3-s2))) * np.power(Q2,(s2-s1))
# parse data using Q2 and Q1 transition points
idx_G2 = q <= Q2
idx_G1 = np.logical_and((q > Q2),(q <= Q1))
idx_P = q > Q1
# Do the calculation and return the function value
with np.errstate(divide='ignore'):
Iq[idx_G2] = G2 * np.power(q[idx_G2],-s2) * np.exp(-np.power(q[idx_G2]*rg2,2)/(3-s2))
Iq[idx_G1] = np.power(q[idx_G1],-s1) * np.exp(-np.power(q[idx_G1]*rg1,2)/(3-s1))
Iq[idx_P] = D * np.power(q[idx_P],-porod_exp)
return Iq
Iq.vectorized = True # Iq accepts an array of q values
def Iqxy(x, y, rg2, s2, rg1, s1, porod_exp):
return Iq(np.sqrt(x*x + y*y), rg2, s2, rg1, s1, porod_exp)
Iqxy.vectorized = True
Back to Model
Download