- Categories
- Shape-Independent
- Teubner Strey
- teubner_strey.py
Teubner Strey - teubner_strey.py
r"""
Definition
----------
This model calculates the scattered intensity of a two-component system
using the Teubner-Strey model. Unlike :ref:`dab` this function generates
a peak. A two-phase material can be characterised by two length scales -
a correlation length and a domain size (periodicity).
The original paper by Teubner and Strey defined the function as:
.. math::
I(q) propto frac{1}{a_2 + c_1 q^2 + c_2 q^4} + ext{background}
where the parameters $a_2$, $c_1$ and $c_2$ are defined in terms of the
periodicity, $d$, and correlation length $xi$ as:
.. math::
a_2 &= iggl[1+igl(frac{2pixi}{d}igr)^2iggr]^2\
c_1 &= -2xi^2igl(frac{2pixi}{d}igr)^2+2xi^2\
c_2 &= xi^4
and thus, the periodicity, $d$ is given by
.. math::
d = 2pileft[frac12left(frac{a_2}{c_2}
ight)^{1/2}
- frac14frac{c_1}{c_2}
ight]^{-1/2}
and the correlation length, $xi$, is given by
.. math::
xi = left[frac12left(frac{a_2}{c_2}
ight)^{1/2}
+ frac14frac{c_1}{c_2}
ight]^{-1/2}
Here the model is parameterised in terms of $d$ and $xi$ and with an explicit
volume fraction for one phase, $phi_a$, and contrast,
$delta
ho^2 = (
ho_a -
ho_b)^2$ :
.. math::
I(q) = frac{8piphi_a(1-phi_a)(Delta
ho)^2c_2/xi}
{a_2 + c_1q^2 + c_2q^4}
where :math:`8piphi_a(1-phi_a)(Delta
ho)^2c_2/xi` is the constant of
proportionality from the first equation above.
In the case of a microemulsion, $a_2 > 0$, $c_1 < 0$, and $c_2 >0$.
For 2D data, scattering intensity is calculated in the same way as 1D,
where the $q$ vector is defined as
.. math::
q = sqrt{q_x^2 + q_y^2}
References
----------
.. [#] M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195
.. [#] K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343
.. [#] H Endo, M Mihailescu, M. Monkenbusch, J Allgaier, G Gompper, D Richter, B Jakobs, T Sottmann, R Strey, and I Grillo, *J. Chem. Phys.*, 115 (2001), 580
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
from __future__ import division
import numpy as np
from numpy import inf, pi
name = "teubner_strey"
title = "Teubner-Strey model of microemulsions"
description = """
Calculates scattering according to the Teubner-Strey model
"""
category = "shape-independent"
# ["name", "units", default, [lower, upper], "type","description"],
parameters = [
["volfraction_a", "", 0.5, [0, 1.0], "", "Volume fraction of phase a"],
["sld_a", "1e-6/Ang^2", 0.3, [-inf, inf], "", "SLD of phase a"],
["sld_b", "1e-6/Ang^2", 6.3, [-inf, inf], "", "SLD of phase b"],
["d", "Ang", 100.0, [0, inf], "", "Domain size (periodicity)"],
["xi", "Ang", 30.0, [0, inf], "", "Correlation length"],
]
def Iq(q, volfraction_a, sld_a, sld_b, d, xi):
"""SAS form"""
drho = sld_a - sld_b
k = 2.0*pi*xi/d
a2 = (1.0 + k**2)**2
c1 = 2.0*xi**2 * (1.0 - k**2)
c2 = xi**4
prefactor = 8.0*pi * volfraction_a*(1.0 - volfraction_a) * drho**2 * c2/xi
return 1.0e-4*prefactor / np.polyval([c2, c1, a2], q**2)
Iq.vectorized = True # Iq accepts an array of q values
def random():
"""Return a random parameter set for the model."""
d = 10**np.random.uniform(1, 4)
xi = 10**np.random.uniform(-0.3, 2)*d
pars = dict(
#background=0,
scale=100,
volfraction_a=10**np.random.uniform(-3, 0),
sld_a=np.random.uniform(-0.5, 12),
sld_b=np.random.uniform(-0.5, 12),
d=d,
xi=xi,
)
return pars
demo = dict(scale=1, background=0, volfraction_a=0.5,
sld_a=0.3, sld_b=6.3,
d=100.0, xi=30.0)
tests = [[{}, 0.06, 41.5918888453]]
Back to Model
Download