- Categories
- Ellipsoid
- Core Shell Ellipsoid
- core_shell_ellipsoid.c
Core Shell Ellipsoid - core_shell_ellipsoid.c
// Converted from Igor function gfn4, using the same pattern as ellipsoid
// for evaluating the parts of the integral.
// FUNCTION gfn4: CONTAINS F(Q,A,B,MU)**2 AS GIVEN
// BY (53) & (58-59) IN CHEN AND
// KOTLARCHYK REFERENCE
//
// <OBLATE ELLIPSOID>
static double
_cs_ellipsoid_kernel(double qab, double qc,
double equat_core, double polar_core,
double equat_shell, double polar_shell,
double sld_core_shell, double sld_shell_solvent)
{
const double qr_core = sqrt(square(equat_core*qab) + square(polar_core*qc));
const double si_core = sas_3j1x_x(qr_core);
const double volume_core = M_4PI_3*equat_core*equat_core*polar_core;
const double fq_core = si_core*volume_core*sld_core_shell;
const double qr_shell = sqrt(square(equat_shell*qab) + square(polar_shell*qc));
const double si_shell = sas_3j1x_x(qr_shell);
const double volume_shell = M_4PI_3*equat_shell*equat_shell*polar_shell;
const double fq_shell = si_shell*volume_shell*sld_shell_solvent;
return fq_core + fq_shell;
}
static double
form_volume(double radius_equat_core,
double x_core,
double thick_shell,
double x_polar_shell)
{
const double equat_shell = radius_equat_core + thick_shell;
const double polar_shell = radius_equat_core*x_core + thick_shell*x_polar_shell;
double vol = M_4PI_3*equat_shell*equat_shell*polar_shell;
return vol;
}
static double
radius_from_volume(double radius_equat_core, double x_core, double thick_shell, double x_polar_shell)
{
const double volume_ellipsoid = form_volume(radius_equat_core, x_core, thick_shell, x_polar_shell);
return cbrt(volume_ellipsoid/M_4PI_3);
}
static double
radius_from_curvature(double radius_equat_core, double x_core, double thick_shell, double x_polar_shell)
{
// Trivial cases
if (1.0 == x_core && 1.0 == x_polar_shell) return radius_equat_core + thick_shell;
if ((radius_equat_core + thick_shell)*(radius_equat_core*x_core + thick_shell*x_polar_shell) == 0.) return 0.;
// see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449
const double radius_equat_tot = radius_equat_core + thick_shell;
const double radius_polar_tot = radius_equat_core*x_core + thick_shell*x_polar_shell;
const double ratio = (radius_polar_tot < radius_equat_tot
? radius_polar_tot / radius_equat_tot
: radius_equat_tot / radius_polar_tot);
const double e1 = sqrt(1.0 - ratio*ratio);
const double b1 = 1.0 + asin(e1) / (e1 * ratio);
const double bL = (1.0 + e1) / (1.0 - e1);
const double b2 = 1.0 + 0.5 * ratio * ratio / e1 * log(bL);
const double delta = 0.75 * b1 * b2;
const double ddd = 2.0 * (delta + 1.0) * radius_polar_tot * radius_equat_tot * radius_equat_tot;
return 0.5 * cbrt(ddd);
}
static double
radius_effective(int mode, double radius_equat_core, double x_core, double thick_shell, double x_polar_shell)
{
const double radius_equat_tot = radius_equat_core + thick_shell;
const double radius_polar_tot = radius_equat_core*x_core + thick_shell*x_polar_shell;
switch (mode) {
default:
case 1: // average outer curvature
return radius_from_curvature(radius_equat_core, x_core, thick_shell, x_polar_shell);
case 2: // equivalent volume sphere
return radius_from_volume(radius_equat_core, x_core, thick_shell, x_polar_shell);
case 3: // min outer radius
return (radius_polar_tot < radius_equat_tot ? radius_polar_tot : radius_equat_tot);
case 4: // max outer radius
return (radius_polar_tot > radius_equat_tot ? radius_polar_tot : radius_equat_tot);
}
}
static void
Fq(double q,
double *F1,
double *F2,
double radius_equat_core,
double x_core,
double thick_shell,
double x_polar_shell,
double core_sld,
double shell_sld,
double solvent_sld)
{
const double sld_core_shell = core_sld - shell_sld;
const double sld_shell_solvent = shell_sld - solvent_sld;
const double polar_core = radius_equat_core*x_core;
const double equat_shell = radius_equat_core + thick_shell;
const double polar_shell = radius_equat_core*x_core + thick_shell*x_polar_shell;
// translate from [-1, 1] => [0, 1]
const double m = 0.5;
const double b = 0.5;
double total_F1 = 0.0; //initialize intergral
double total_F2 = 0.0; //initialize intergral
for(int i=0;i<GAUSS_N;i++) {
const double cos_theta = GAUSS_Z[i]*m + b;
const double sin_theta = sqrt(1.0 - cos_theta*cos_theta);
double fq = _cs_ellipsoid_kernel(q*sin_theta, q*cos_theta,
radius_equat_core, polar_core,
equat_shell, polar_shell,
sld_core_shell, sld_shell_solvent);
total_F1 += GAUSS_W[i] * fq;
total_F2 += GAUSS_W[i] * fq * fq;
}
total_F1 *= m;
total_F2 *= m;
// convert to [cm-1]
*F1 = 1.0e-2 * total_F1;
*F2 = 1.0e-4 * total_F2;
}
static double
Iqac(double qab, double qc,
double radius_equat_core,
double x_core,
double thick_shell,
double x_polar_shell,
double core_sld,
double shell_sld,
double solvent_sld)
{
const double sld_core_shell = core_sld - shell_sld;
const double sld_shell_solvent = shell_sld - solvent_sld;
const double polar_core = radius_equat_core*x_core;
const double equat_shell = radius_equat_core + thick_shell;
const double polar_shell = radius_equat_core*x_core + thick_shell*x_polar_shell;
double fq = _cs_ellipsoid_kernel(qab, qc,
radius_equat_core, polar_core,
equat_shell, polar_shell,
sld_core_shell, sld_shell_solvent);
//convert to [cm-1]
return 1.0e-4 * fq * fq;
}
Back to Model
Download