- Categories
- Shape-Independent
- Porod
- porod.py
Porod - porod.py
r"""
This model fits the Porod function
.. math:: I(q) = C/q^4
to the data directly without any need for linearisation (cf. Log I(q) vs Log q).
Here $C = 2pi (Delta
ho)^2 S_v$ is the scale factor where $S_v$ is
the specific surface area (ie, surface area / volume) of the sample, and
$Delta
ho$ is the contrast factor.
For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
where the q vector is defined as
.. math:: q = sqrt{q_x^2+q_y^2}
References
----------
.. [#] G Porod. *Kolloid Zeit*. 124 (1951) 83
.. [#] L A Feigin, D I Svergun, G W Taylor. *Structure Analysis by Small-Angle X-ray and Neutron Scattering*. Springer. (1987)
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
import numpy as np
from numpy import inf, errstate
name = "porod"
title = "Porod function"
description = """
I(q) = scale/q^4 + background
"""
category = "shape-independent"
parameters = []
def Iq(q):
"""
@param q: Input q-value
"""
with errstate(divide='ignore'):
return q**-4
Iq.vectorized = True # Iq accepts an array of q values
def random():
"""Return a random parameter set for the model."""
sld, solvent = np.random.uniform(-0.5, 12, size=2)
radius = 10**np.random.uniform(1, 4.7)
Vf = 10**np.random.uniform(-3, -1)
scale = 1e-4 * Vf * 2*np.pi*(sld-solvent)**2/(3*radius)
pars = dict(
scale=scale,
)
return pars
demo = dict(scale=1.5, background=0.5)
tests = [
[{'scale': 0.00001, 'background':0.01}, 0.04, 3.916250],
[{}, 0.0, inf],
]
Back to Model
Download