- Categories
- Shape-Independent
- Line
- line.py
Line - line.py
r"""
This model calculates intensity using simple linear function
Definition
----------
The scattering intensity $I(q)$ is calculated as
.. math::
I(q) = ext{scale} (A + B cdot q) + ext{background}
.. note::
For 2D plots intensity has different definition than other shape independent models
.. math::
I(q) = ext{scale} (I(qx) cdot I(qy)) + ext{background}
References
----------
None.
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
import numpy as np
from numpy import inf
name = "line"
title = "Line model"
description = """
I(q) = A + B*q
List of default parameters:
A = intercept
B = slope
"""
category = "shape-independent"
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type", "description"],
parameters = [["intercept", "1/cm", 1.0, [-inf, inf], "", "intercept in linear model"],
["slope", "Ang/cm", 1.0, [-inf, inf], "", "slope in linear model"],
]
# pylint: enable=bad-whitespace, line-too-long
def Iq(q, intercept, slope):
"""
:param q: Input q-value
:param intercept: Intrecept in linear model
:param slope: Slope in linear model
:return: Calculated Intensity
"""
inten = intercept + slope*q
return inten
Iq.vectorized = True # Iq accepts an array of q values
def Iqxy(qx, qy, intercept, slope):
"""
:param qx: Input q_x-value
:param qy: Input q_y-value
:param intercept: Intrecept in linear model
:param slope: Slope in linear model
:return: 2D-Intensity
"""
# TODO: SasView documents 2D intensity as Iq(qx)*Iq(qy), but returns Iq(qy)
# Note: SasView.run([r, theta]) does return Iq(qx)*Iq(qy)
return Iq(qx, intercept, slope)*Iq(qy, intercept, slope)
Iqxy.vectorized = True # Iqxy accepts an array of qx qy values
# uncomment the following to test Iqxy in C models
#del Iq, Iqxy
#c_code = """
#static double Iq(double q, double b, double m) { return m*q+b; }
#static double Iqxy(double qx, double qy, double b, double m)
#{ return (m*qx+b)*(m*qy+b); }
#"""
def random():
"""Return a random parameter set for the model."""
scale = 10**np.random.uniform(0, 3)
slope = np.random.uniform(-1, 1)*1e2
offset = 1e-5 + (0 if slope > 0 else -slope)
intercept = 10**np.random.uniform(0, 1) + offset
pars = dict(
#background=0,
scale=scale,
slope=slope,
intercept=intercept,
)
return pars
tests = [
[{'intercept': 1.0, 'slope': 1.0, }, 1.0, 2.001],
[{'intercept': 1.0, 'slope': 1.0, }, 0.0, 1.001],
[{'intercept': 1.0, 'slope': 1.0, }, 0.4, 1.401],
[{'intercept': 1.0, 'slope': 1.0, }, 1.3, 2.301],
[{'intercept': 1.0, 'slope': 1.0, }, 0.5, 1.501],
[{'intercept': 1.0, 'slope': 1.0, }, [0.4, 0.5], [1.401, 1.501]],
[{'intercept': 1.0, 'slope': 1.0, 'background': 0.0, }, (1.3, 1.57), 5.911],
]
Back to Model
Download