- Categories
- Shape-Independent
- Gel Fit
- gel_fit.py
Gel Fit - gel_fit.py
r"""
*This model was implemented by an interested user!*
Unlike a concentrated polymer solution, the fine-scale polymer distribution
in a gel involves at least two characteristic length scales,
a shorter correlation length ( $a1$ ) to describe the rapid fluctuations
in the position of the polymer chains that ensure thermodynamic equilibrium,
and a longer distance (denoted here as $a2$ ) needed to account for the static
accumulations of polymer pinned down by junction points or clusters of such
points. The latter is derived from a simple Guinier function. Compare also the
gauss_lorentz_gel model.
Definition
----------
The scattered intensity $I(q)$ is calculated as
.. math::
I(Q) = I(0)_L frac{1}{left( 1+left[ ((D+1/3)Q^2a_{1}^2
ight]
ight)^{D/2}} + I(0)_G expleft( -Q^2a_{2}^2
ight) + B
where
.. math::
a_{2}^2 approx frac{R_{g}^2}{3}
Note that the first term reduces to the Ornstein-Zernicke equation
when $D = 2$; ie, when the Flory exponent is 0.5 (theta conditions).
In gels with significant hydrogen bonding $D$ has been reported to be
~2.6 to 2.8.
References
----------
.. [#] Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, *J. Chem. Phys.* 1992, 97 (9), 6829-6841
.. [#] Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, *Macromolecules* 1991, 24, 543-548
Authorship and Verification
----------------------------
* **Author:**
* **Last Modified by:**
* **Last Reviewed by:**
"""
import numpy as np
from numpy import inf
name = "gel_fit"
title = "Fitting using fine-scale polymer distribution in a gel."
description = """
Structure factor for interacting particles:
Shibayama-Geissler Two-Length Scale Fit for Gels (GelFit)
Shibayama; Tanaka; Han J Chem Phys (1992), 97(9), 6829-6841
Mallam; Horkay; Hecht; Rennie; Geissler, Macromol (1991), 24, 543
"""
category = "shape-independent"
# pylint: disable=bad-whitespace, line-too-long
# ["name", "units", default, [lower, upper], "type","description"],
parameters = [["guinier_scale", "cm^-1", 1.7, [-inf, inf], "", "Guinier length scale"],
["lorentz_scale", "cm^-1", 3.5, [-inf, inf], "", "Lorentzian length scale"],
["rg", "Ang", 104.0, [2, inf], "", "Radius of gyration"],
["fractal_dim", "", 2.0, [0, inf], "", "Fractal exponent"],
["cor_length", "Ang", 16.0, [0, inf], "", "Correlation length"]
]
# pylint: enable=bad-whitespace, line-too-long
source = ["gel_fit.c"]
def random():
"""Return a random parameter set for the model."""
guinier_scale = 10**np.random.uniform(1, 3)
lorentz_scale = 10**np.random.uniform(1, 3)
rg = 10**np.random.uniform(1, 5)
fractal_dim = np.random.uniform(0, 6)
cor_length = 10**np.random.uniform(0, 3)
pars = dict(
#background=0,
scale=1,
guinier_scale=guinier_scale,
lorentz_scale=lorentz_scale,
rg=rg,
fractal_dim=fractal_dim,
cor_length=cor_length
)
return pars
demo = dict(background=0.01,
guinier_scale=1.7,
lorentz_scale=3.5,
rg=104,
fractal_dim=2.0,
cor_length=16.0)
tests = [[{'guinier_scale': 1.0,
'lorentz_scale': 1.0,
'rg': 10.0,
'fractal_dim': 10.0,
'cor_length': 20.0,
'background': 0.0,
}, 0.1, 0.716532],
[{'guinier_scale': 4.0,
'lorentz_scale': 10.0,
'rg': 500.0,
'fractal_dim': 1.0,
'cor_length': 20.0,
'background': 20.0,
}, 5.0, 20.1224653026],
]
Back to Model
Download