- Categories
- Ellipsoid
- Ellipsoid
- ellipsoid.c
Ellipsoid - ellipsoid.c
static double
form_volume(double radius_polar, double radius_equatorial)
{
return M_4PI_3*radius_polar*radius_equatorial*radius_equatorial;
}
static double
radius_from_volume(double radius_polar, double radius_equatorial)
{
return cbrt(radius_polar*radius_equatorial*radius_equatorial);
}
static double
radius_from_curvature(double radius_polar, double radius_equatorial)
{
// Trivial cases
if (radius_polar == radius_equatorial) return radius_polar;
if (radius_polar * radius_equatorial == 0.) return 0.;
// see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449
const double ratio = (radius_polar < radius_equatorial
? radius_polar / radius_equatorial
: radius_equatorial / radius_polar);
const double e1 = sqrt(1.0 - ratio*ratio);
const double b1 = 1.0 + asin(e1) / (e1 * ratio);
const double bL = (1.0 + e1) / (1.0 - e1);
const double b2 = 1.0 + 0.5 * ratio * ratio / e1 * log(bL);
const double delta = 0.75 * b1 * b2;
const double ddd = 2.0 * (delta + 1.0) * radius_polar * radius_equatorial * radius_equatorial;
return 0.5 * cbrt(ddd);
}
static double
radius_effective(int mode, double radius_polar, double radius_equatorial)
{
switch (mode) {
default:
case 1: // average curvature
return radius_from_curvature(radius_polar, radius_equatorial);
case 2: // equivalent volume sphere
return radius_from_volume(radius_polar, radius_equatorial);
case 3: // min radius
return (radius_polar < radius_equatorial ? radius_polar : radius_equatorial);
case 4: // max radius
return (radius_polar > radius_equatorial ? radius_polar : radius_equatorial);
}
}
static void
Fq(double q,
double *F1,
double *F2,
double sld,
double sld_solvent,
double radius_polar,
double radius_equatorial)
{
// Using ratio v = Rp/Re, we can implement the form given in Guinier (1955)
// i(h) = int_0^pi/2 Phi^2(h a sqrt(cos^2 + v^2 sin^2) cos dT
// = int_0^pi/2 Phi^2(h a sqrt((1-sin^2) + v^2 sin^2) cos dT
// = int_0^pi/2 Phi^2(h a sqrt(1 + sin^2(v^2-1)) cos dT
// u-substitution of
// u = sin, du = cos dT
// i(h) = int_0^1 Phi^2(h a sqrt(1 + u^2(v^2-1)) du
const double v_square_minus_one = square(radius_polar/radius_equatorial) - 1.0;
// translate a point in [-1,1] to a point in [0, 1]
// const double u = GAUSS_Z[i]*(upper-lower)/2 + (upper+lower)/2;
const double zm = 0.5;
const double zb = 0.5;
double total_F2 = 0.0;
double total_F1 = 0.0;
for (int i=0;i<GAUSS_N;i++) {
const double u = GAUSS_Z[i]*zm + zb;
const double r = radius_equatorial*sqrt(1.0 + u*u*v_square_minus_one);
const double f = sas_3j1x_x(q*r);
total_F2 += GAUSS_W[i] * f * f;
total_F1 += GAUSS_W[i] * f;
}
// translate dx in [-1,1] to dx in [lower,upper]
total_F1 *= zm;
total_F2 *= zm;
const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial);
*F1 = 1e-2 * s * total_F1;
*F2 = 1e-4 * s * s * total_F2;
}
static double
Iqac(double qab, double qc,
double sld,
double sld_solvent,
double radius_polar,
double radius_equatorial)
{
const double qr = sqrt(square(radius_equatorial*qab) + square(radius_polar*qc));
const double f = sas_3j1x_x(qr);
const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial);
return 1.0e-4 * square(f * s);
}
Back to Model
Download