Spherical Sld - spherical_sld.py

    r"""
Definition
----------

Similarly to the onion, this model provides the form factor, $P(q)$, for
a multi-shell sphere, where the interface between the each neighboring
shells can be described by the error function, power-law, or exponential
functions.  The scattering intensity is computed by building a continuous
custom SLD profile along the radius of the particle. The SLD profile is
composed of a number of uniform shells with interfacial shells between them.

.. figure:: img/spherical_sld_profile.png

    Example SLD profile

Unlike the :ref:`onion` model (using an analytical integration), the interfacial
shells here are sub-divided and numerically integrated assuming each
sub-shell is described by a line function, with *n_steps* sub-shells per
interface. The form factor is normalized by the total volume of the sphere.

.. note::

   *n_shells* must be an integer. *n_steps* must be an ODD integer.

Interface shapes are as follows:

    0: erf($
u z$)

    1: Rpow($z^
u$)

    2: Lpow($z^
u$)

    3: Rexp($-
u z$)

    4: Lexp($-
u z$)

The form factor $P(q)$ in 1D is calculated by:

.. math::

    P(q) = frac{f^2}{V_	ext{particle}} 	ext{ where }
    f = f_	ext{core} + sum_{	ext{inter}_i=0}^N f_{	ext{inter}_i} +
    sum_{	ext{flat}_i=0}^N f_{	ext{flat}_i} +f_	ext{solvent}

For a spherically symmetric particle with a particle density $
ho_x(r)$
the sld function can be defined as:

.. math::

    f_x = 4 pi int_{0}^{infty} 
ho_x(r)  frac{sin(qr)} {qr^2} r^2 dr


so that individual terms can be calculated as follows:

.. math::

    f_	ext{core} &= 4 pi int_{0}^{r_	ext{core}} 
ho_	ext{core}
    frac{sin(qr)} {qr} r^2 dr =
    3 
ho_	ext{core} V(r_	ext{core})
    Big[ frac{sin(qr_	ext{core}) - qr_	ext{core} cos(qr_	ext{core})}
    {qr_	ext{core}^3} Big] \
    f_{	ext{inter}_i} &= 4 pi int_{Delta t_{ 	ext{inter}_i } }
    
ho_{ 	ext{inter}_i } frac{sin(qr)} {qr} r^2 dr \
    f_{	ext{shell}_i} &= 4 pi int_{Delta t_{ 	ext{inter}_i } }
    
ho_{ 	ext{flat}_i } frac{sin(qr)} {qr} r^2 dr =
    3 
ho_{ 	ext{flat}_i } V ( r_{ 	ext{inter}_i } +
    Delta t_{ 	ext{inter}_i } )
    Big[ frac{sin(qr_{	ext{inter}_i} + Delta t_{ 	ext{inter}_i } )
    - q (r_{	ext{inter}_i} + Delta t_{ 	ext{inter}_i })
    cos(q( r_{	ext{inter}_i} + Delta t_{ 	ext{inter}_i } ) ) }
    {q ( r_{	ext{inter}_i} + Delta t_{ 	ext{inter}_i } )^3 }  Big]
    -3 
ho_{ 	ext{flat}_i } V(r_{ 	ext{inter}_i })
    Big[ frac{sin(qr_{	ext{inter}_i}) - qr_{	ext{flat}_i}
    cos(qr_{	ext{inter}_i}) } {qr_{	ext{inter}_i}^3} Big] \
    f_	ext{solvent} &= 4 pi int_{r_N}^{infty} 
ho_	ext{solvent}
    frac{sin(qr)} {qr} r^2 dr =
    3 
ho_	ext{solvent} V(r_N)
    Big[ frac{sin(qr_N) - qr_N cos(qr_N)} {qr_N^3} Big]

Here we assumed that the SLDs of the core and solvent are constant in $r$.
The SLD at the interface between shells, $
ho_{	ext {inter}_i}$
is calculated with a function chosen by an user, where the functions are

Exp:

.. math::

    
ho_{{inter}_i} (r) &= egin{cases}
    B expBig( frac {pm A(r - r_{	ext{flat}_i})}
    {Delta t_{ 	ext{inter}_i }} Big) +C  & mbox{for } A 
eq 0 \
    B Big( frac {(r - r_{	ext{flat}_i})}
    {Delta t_{ 	ext{inter}_i }} Big) +C  & mbox{for } A = 0 \
    end{cases}

Power-Law:

.. math::

    
ho_{{inter}_i} (r) &= egin{cases}
    pm B Big( frac {(r - r_{	ext{flat}_i} )} {Delta t_{ 	ext{inter}_i }}
    Big) ^A  +C  & mbox{for } A 
eq 0 \
    
ho_{	ext{flat}_{i+1}}  & mbox{for } A = 0 \
    end{cases}

Erf:

.. math::

    
ho_{{inter}_i} (r) = egin{cases}
    B 	ext{erf} Big( frac { A(r - r_{	ext{flat}_i})}
    {sqrt{2} Delta t_{ 	ext{inter}_i }} Big) +C  & mbox{for } A 
eq 0 \
    B Big( frac {(r - r_{	ext{flat}_i} )} {Delta t_{ 	ext{inter}_i }}
    Big)  +C  & mbox{for } A = 0 \
    end{cases}

The functions are normalized so that they vary between 0 and 1, and they are
constrained such that the SLD is continuous at the boundaries of the interface
as well as each sub-shell. Thus B and C are determined.

Once $
ho_{	ext{inter}_i}$ is found at the boundary of the sub-shell of the
interface, we can find its contribution to the form factor $P(q)$

.. math::

    f_{	ext{inter}_i} &= 4 pi int_{Delta t_{ 	ext{inter}_i } }
    
ho_{ 	ext{inter}_i } frac{sin(qr)} {qr} r^2 dr =
    4 pi sum_{j=1}^{n_	ext{steps}}
    int_{r_j}^{r_{j+1}} 
ho_{ 	ext{inter}_i } (r_j)
    frac{sin(qr)} {qr} r^2 dr \
    approx 4 pi sum_{j=1}^{n_	ext{steps}} Big[
    3 ( 
ho_{ 	ext{inter}_i } ( r_{j+1} ) - 
ho_{ 	ext{inter}_i }
    ( r_{j} ) V (r_j)
    Big[ frac {r_j^2 eta_	ext{out}^2 sin(eta_	ext{out})
    - (eta_	ext{out}^2-2) cos(eta_	ext{out}) }
    {eta_	ext{out}^4 } Big] \
    {} - 3 ( 
ho_{ 	ext{inter}_i } ( r_{j+1} ) - 
ho_{ 	ext{inter}_i }
    ( r_{j} ) V ( r_{j-1} )
    Big[ frac {r_{j-1}^2 sin(eta_	ext{in})
    - (eta_	ext{in}^2-2) cos(eta_	ext{in}) }
    {eta_	ext{in}^4 } Big] \
    {} + 3 
ho_{ 	ext{inter}_i } ( r_{j+1} )  V ( r_j )
    Big[ frac {sin(eta_	ext{out}) - cos(eta_	ext{out}) }
    {eta_	ext{out}^4 } Big]
    - 3 
ho_{ 	ext{inter}_i } ( r_{j} )  V ( r_j )
    Big[ frac {sin(eta_	ext{in}) - cos(eta_	ext{in}) }
    {eta_	ext{in}^4 } Big]
    Big]

where

.. math::
    :nowrap:

    egin{align*}
    V(a) &= frac {4pi}{3}a^3 && \
    a_	ext{in} sim frac{r_j}{r_{j+1} -r_j} 	ext{, } & a_	ext{out}
    sim frac{r_{j+1}}{r_{j+1} -r_j} \
    eta_	ext{in} &= qr_j 	ext{, } & eta_	ext{out} &= qr_{j+1}
    end{align*}

We assume $
ho_{	ext{inter}_j} (r)$ is approximately linear
within the sub-shell $j$.

Finally the form factor can be calculated by

.. math::

    P(q) = frac{[f]^2} {V_	ext{particle}} mbox{ where } V_	ext{particle}
    = V(r_{	ext{shell}_N})

For 2D data the scattering intensity is calculated in the same way as 1D,
where the $q$ vector is defined as

.. math::

    q = sqrt{q_x^2 + q_y^2}

.. note::

    The outer most radius is used as the effective radius for $S(Q)$
    when $P(Q) * S(Q)$ is applied.

References
----------

.. [#] L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray
   and Neutron Scattering, Plenum Press, New York, (1987)

Authorship and Verification
---------------------------

* **Author:** Jae-Hie Cho **Date:** Nov 1, 2010
* **Last Modified by:** Paul Kienzle **Date:** Dec 20, 2016
* **Last Reviewed by:** Steve King **Date:** March 29, 2019
"""

import numpy as np
from numpy import inf, expm1, sqrt
from scipy.special import erf

name = "spherical_sld"
title = "Spherical SLD intensity calculation"
description = """
            I(q) =
               background = Incoherent background [1/cm]
        """
category = "shape:sphere"

SHAPES = ["erf(|nu|*z)", "Rpow(z^|nu|)", "Lpow(z^|nu|)",
          "Rexp(-|nu|z)", "Lexp(-|nu|z)"]

# pylint: disable=bad-whitespace, line-too-long
#            ["name", "units", default, [lower, upper], "type", "description"],
parameters = [["n_shells",             "",           1,      [1, 10],        "volume", "number of shells (must be integer)"],
              ["sld_solvent",          "1e-6/Ang^2", 1.0,    [-inf, inf],    "sld", "solvent sld"],
              ["sld[n_shells]",        "1e-6/Ang^2", 4.06,   [-inf, inf],    "sld", "sld of the shell"],
              ["thickness[n_shells]",  "Ang",        100.0,  [0, inf],       "volume", "thickness shell"],
              ["interface[n_shells]",  "Ang",        50.0,   [0, inf],       "volume", "thickness of the interface"],
              ["shape[n_shells]",      "",           0,      [SHAPES],       "", "interface shape"],
              ["nu[n_shells]",         "",           2.5,    [1, inf],       "", "interface shape exponent"],
              ["n_steps",              "",           35,     [0, inf],       "", "number of steps in each interface (must be an odd integer)"],
             ]
# pylint: enable=bad-whitespace, line-too-long
source = ["lib/polevl.c", "lib/sas_erf.c", "lib/sas_3j1x_x.c", "spherical_sld.c"]
single = False  # TODO: fix low q behaviour
have_Fq = True
radius_effective_modes = ["outer radius"]

profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)']

SHAPE_FUNCTIONS = [
    lambda z, nu: erf(nu/sqrt(2)*(2*z-1))/(2*erf(nu/sqrt(2))) + 0.5,  # erf
    lambda z, nu: z**nu,                    # Rpow
    lambda z, nu: 1 - (1-z)**nu,            # Lpow
    lambda z, nu: expm1(-nu*z)/expm1(-nu),  # Rexp
    lambda z, nu: expm1(nu*z)/expm1(nu),    # Lexp
]

def profile(n_shells, sld_solvent, sld, thickness,
            interface, shape, nu, n_steps):
    """
    Returns shape profile with x=radius, y=SLD.
    """

    n_shells = int(n_shells + 0.5)
    n_steps = int(n_steps + 0.5)
    z = []
    rho = []
    z_next = 0
    # two sld points for core
    z.append(z_next)
    rho.append(sld[0])

    for i in range(0, n_shells):
        z_next += thickness[i]
        z.append(z_next)
        rho.append(sld[i])
        dz = interface[i]/n_steps
        sld_l = sld[i]
        sld_r = sld[i+1] if i < n_shells-1 else sld_solvent
        fun = SHAPE_FUNCTIONS[int(np.clip(shape[i], 0, len(SHAPE_FUNCTIONS)-1))]
        for step in range(1, n_steps+1):
            portion = fun(float(step)/n_steps, max(abs(nu[i]), 1e-14))
            z_next += dz
            z.append(z_next)
            rho.append((sld_r - sld_l)*portion + sld_l)
    z.append(z_next*1.2)
    rho.append(sld_solvent)
    # return sld profile (r, beta)
    return np.asarray(z), np.asarray(rho)

# TODO: no random parameter generator for spherical SLD.

demo = {
    "n_shells": 5,
    "n_steps": 35.0,
    "sld_solvent": 1.0,
    "sld": [2.07, 4.0, 3.5, 4.0, 3.5],
    "thickness": [50.0, 100.0, 100.0, 100.0, 100.0],
    "interface": [50.0]*5,
    "shape": [0]*5,
    "nu": [2.5]*5,
    }

tests = [
    # Results checked against sasview 3.1
    [{"n_shells": 5,
      "n_steps": 35,
      "sld_solvent": 1.0,
      "sld": [2.07, 4.0, 3.5, 4.0, 3.5],
      "thickness": [50.0, 100.0, 100.0, 100.0, 100.0],
      "interface": [50]*5,
      "shape": [0]*5,
      "nu": [2.5]*5,
     }, 0.001, 750697.238],
]

Back to Model Download