- Categories
- Sphere
- coreshellmicrogel (SASfit)
- sasfit_coreshellmicrogel.py
coreshellmicrogel (SASfit) - sasfit_coreshellmicrogel.py
r"""
This file has been automatically generated by sasfit_convert and manually edited
by Wojciech Potrzebowski, ESS on 2017-12-07.
The model calculates an empirical functional form for SAS data characterized
by coreshellmicrogel
Definition:
-----------
This model can be used to calculate the scattering from spherical
particles with a parabolic "fuzzy" interface cite{Berndt2005,Berndt2006,Berndt2006a}.
The radial profile is given by
.. math::
ho(r,R,sigma) &=
egin{cases}
1 & mbox{for } rleq R-sigma \
1-frac{1}{2}frac{left((r-R)+sigma
ight)^2}{sigma^2} & mbox{for } R-sigma < r leq R \
frac{1}{2}frac{left((R-r)+sigma
ight)^2}{sigma^2} & mbox{for } R< rleq R+sigma \
0 & mbox{for } r > leq R+sigma
end{cases}
where $R=W+sigma$. For such a radial profile the Fourier-transformation can be calculated analytically as
.. math::
F(Q,R,sigma) = mathcal{F}[
ho(r,R,sigma)] = \
4 pi Bigg(
left(frac{R}{sigma^2}+frac{1}{sigma}
ight) frac{cos (q(R+sigma))}{q^4}
+ left(frac{R}{sigma^2}-frac{1}{sigma}
ight) frac{cos (q(R-sigma))}{q^4} \
- 3 frac{sin(q(R+sigma))}{q^5 sigma^2}
- 3 frac{sin(q(R-sigma))}{q^5 sigma^2}
- 6 frac{sin(qR)}{q^5 sigma^2}
- 2 R frac{cos(qR)}{q^4 sigma^2}
The last term in the brackets needed to be corrected compared to the papers mentioned above
due to a typo in the original papers.
The radial scattering length density profile of a fuzzy core
shell like in Fig.
ef{fig:profile:CoreShellMicrogel}b can be obtained by
.. math::
eta_{core,sh}(r,W_ extrm{core},sigma_ extrm{core},D,sigma_ extrm{sh,in},W_ extrm{sh},sigma_ extrm{sh,out}) =
eta_ extrm{sol}
+ (eta_ extrm{shell}-eta_ extrm{sol})
ho(r,R_ extrm{out},sigma_ extrm{out}) \
+ (eta_ extrm{shell}-eta_ extrm{sol})
ho(r,R_ extrm{sh,in},sigma_ extrm{sh,in})
+ (eta_ extrm{core} -eta_ extrm{sol})
ho(r,R_ extrm{core},sigma_ extrm{core})
with
.. math::
R_ extrm{core} &= W_ extrm{core}+sigma_ extrm{core} \
R_ extrm{sh,in}&= R_ extrm{core}+D \
R_ extrm{out} &= R_ extrm{sh,in}+sigma_ extrm{sh,in}+W_ extrm{sh}+sigma_ extrm{sh,out}
In the same way also the scattering amplitude $F_ extrm{core,sh}(Q,cdots)$ and the scattering intensity
$I_ extrm{core,sh}(Q,cdots)=abs{F_ extrm{core,sh}(Q,cdots)}^2$ can be calculated
.. math::
F_ extrm{core,sh}(Q,W_ extrm{core},sigma_ extrm{core},D,sigma_ extrm{sh,in},W_ extrm{sh},sigma_ extrm{sh,out}) =
(eta_ extrm{shell}-eta_ extrm{sol}) F(Q,R_ extrm{out},sigma_ extrm{out}) \
+ (eta_ extrm{shell}-eta_ extrm{sol}) F(Q,R_ extrm{sh,in},sigma_ extrm{sh,in})
+ (eta_ extrm{core} -eta_ extrm{sol}) F(Q,R_ extrm{core},sigma_ extrm{core})
I_ extrm{core,sh}(Q,W_ extrm{core},sigma_ extrm{core},D,sigma_ extrm{sh,in},W_ extrm{sh},sigma_ extrm{sh,out}) &=
abs{F_ extrm{core,sh}(Q,cdots)}^2
References:
-----------
Author(s) of the original file: src/plugins/fuzzysphere/sasfit_ff_coreshellmicrogel.c
Joachim Kohlbrecher (joachim.kohlbrecher@psi.ch)
https://github.com/SASfit/SASfit/
A paper about SASfit has been published in
J. Appl. Cryst. (2015). 48, 1587-1598
doi:10.1107/S1600576715016544
Ingo Berndt, Jan Skov Pedersen, Peter Lindner, and Walter Richtering.
Influence of shell thickness and cross-link density on the structure of
temperature-sensitive poly-n-isopropylacrylamidepoly-n-isopropylmethacrylamide
coreshell microgels investigated by small-angle neutron scattering.
Langmuir, 22(1):459-468,2006.PMID: 16378460.
Ingo Berndt, Jan Skov Pedersen, and Walter Richtering.
Structure of multiresponsive intelligent? coreshell microgels.
Journal of the American Chemical Society,
127(26):9372-9373, 2005 PMID: 15984856
Ingo Berndt, Jan Skov Pedersen, and Walter Richtering.
Temperature-sensitive coreshell microgel particles with dense shell.
Angewandte Chemie, 118(11):1769-1773, 2006.
"""
from numpy import inf
name = "coreshellmicrogel"
title = " "
description = ""
category = "shape-independent"
#pylint: disable=bad-whitespace, line-too-long
parameters = [
[ "W_CORE", "", 10.0, [-inf, inf], "volume", "radius of center parts of core Wcore with homogeneous scattering length density"],
[ "SIGMA_CORE", "", 3.0, [-inf, inf], "volume", "interface half width of the core"],
[ "W_SH", "", 4, [-inf, inf], "volume", "width of center parts of shell Wsh with homogeneous scattering length density"],
[ "SIGMA_SHIN", "", 3, [-inf, inf], "volume", "half width of the inner interface of shell"],
[ "D", "", 3.0, [-inf, inf], "volume", "distance between interface of core and in interface of shell"],
[ "SIGMA_OUT", "", 4.0, [-inf, inf], "volume", "half width of the outer surface profile"],
[ "ETA_CORE", "", 3.5, [-inf, inf], "", "scattering length density of homogeneous core part"],
[ "ETA_SHELL", "", 2.5, [-inf, inf], "", "scattering length density of homogeneous shell part "],
[ "ETA_SOL", "", 1.0, [-inf, inf], "", "scattering length density of solvent"],
]
#pylint: enable=bad-whitespace, line-too-long
source = ["sas_pow.c","sasfit_coreshellmicrogel.c" ]
single = False
demo = dict(
W_CORE = 10.0,
SIGMA_CORE = 3.0,
W_SH = 4.0,
SIGMA_SHIN = 3.0,
D = 3.0,
SIGMA_OUT = 4.0,
ETA_CORE = 3.5,
ETA_SHELL = 2.5,
ETA_SOL = 1.0)
tests = [[{}, 0.001, 120157.969934],
[{}, 0.2, 303.628432595],
[{}, [0.2], [303.628432595]]
]
Back to Model
Download